An Instructable, Adaptive Interface for Discovering and
Monitoring Information on the World-Wide Web*

Jude Shavlik, Susan Calcari, Tina Eliassi-Rad, and Jack Solock

Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street

Madison, WI 53706 USA
+1 608 262 7784

{shavlik, scal, eliassi, jacks}Qcs.wisc.edu

ABSTRACT

We are creating a customizable, intelligent interface to
the World-Wide Web that assists a user in locating spe-
cific, current, and relevant information. The Wiscon-
sin Adaptive Web Assistant (WAWA) is capable of ac-
cepting instructions regarding what type of information
the users are seeking and how to go about looking for
it. WAWA compiles these instructions into neural net-
works, which means that the system’s behavior can be
modified via training examples. Users can create these
training examples by rating pages retrieved by WAwa,
but more importantly the system uses techniques from
reinforcement learning to internally create its own ex-
amples (users can also later provide additional instruc-
tions). WAWA uses these neural networks to guide its
autonomous navigation of the Web, thereby producing
an interface to the Web that users periodically instruct
and which in the background searches the Web for rele-
vant information, including periodically revisiting pages
that change regularly.

Keywords

intelligent Web interfaces, instructable software agents,
machine learning, neural networks, information retrieval

INTRODUCTION

Due to the vastness and dynamic nature of the World
Wide Web, there is a tremendous need for flexible
information-finding systems that can be easily cus-
tomized to the personal interests of individuals. The
highly distributed nature of the Web, and the fact that
the content is constantly being updated, presents a se-
rious challenge to those who want to be aware of news,
articles, and data sources being made available daily,
since they do not have time to constantly monitor all
sources for relevant information.

*This paper appears in the Proceedings of the 1999 Interna-
tional Conference on Intelligent User Interfaces, Redondo
Beach (Los Angeles, CA, USA), January 5-8, 1999.

Copyright © ACM 1998.

In addition to the information overload of networked
information provided on the Web, there is the issue of
the value and quality of the resources. People normally
want only very specific information that is related to
their own interests and that they deem authoritative.
However, they are the sole best judge of what is rele-
vant to them and of high quality. Therefore, the most
useful interface to online information will be one that is
customizable by individual users for their own purposes.

The user interface also needs to run autonomously in
order to free the user from the constant monitoring of
the network. The individual user wants the interface to
be instructable so that once advice has been given, the
tool will work on its own over long periods while they de-
vote their attention to their work. This enables the user
to monitor the information that is of interest to them
without spending a lot of time on it. The adaptive, in-
telligent user interface we are developing for this task is
called the Wisconsin Adaptive Web Assistant (WAWA).
It assists users in the discovery, retrieval, and filtering
of online information.

Wawa allows individuals to easily create personalized
computer assistants for searching and monitoring the
Web. We have created a language for describing one’s
interests and for providing hints regarding where rele-
vant information might be found. Our instructable in-
terface converts this user-provided information into two
neural networks. WAWA then uses these scoring func-
tions to guide its search of the Web and to determine
which pages to collect for the user. Since the core of
the system involves neural networks, we are able to use
training examples to refine the user-provided instruc-
tions.

WAwaA is instructable for particular tasks, such as
finding newly released articles, datasets, grant oppor-
tunities, or courseware related to one’s professional ac-
tivities, as well for following one’s personal hobbies and
persistent interests. For example, a cancer researcher
might specify some good starting sites on the Web and
a description of his or her particular interests. Our sys-
tem would then periodically visit these sites, including
additional sites within some number of hyperlinks of
them, collecting the most relevant new pages. Espe-
cially suitable topics for our approach are those where

information changes often and is dispersed over many
different sources, as is the case on the Web.

APPROACH TAKEN

At the heart of WAWA are two neural networks,
implementing the functions SCORETHISLINK and
SCORETHISPAGE. These functions, respectively, guide
the system’s wandering within the Web and judge the
value of the pages encountered. The user mainly pro-
grams these two functions by providing advice. Follow-
ing [4], we call our language an advice language, because
this name emphasizes that the underlying system does
not blindly follow the user-provided instructions, but
instead uses machine learning techniques to refine this
advice based on the system’s experiences.

Table 1 provides a high-level description of WAwA.
First, its initial neural networks need to be created.
One can view the process of converting advice into a
neural network as analogous to compiling a traditional
program into machine code, but our system instead
compiles instructions into an intermediate language ex-
pressed using neural networks. We use the KBANN al-
gorithm [12] to convert the user’s instructions into a
neural network that initially exactly executes the user’s
advice. This provides the important advantage that our
“machine code” can automatically be refined based on
subsequent feedback provided by either the user or the
Web, as explained below.

The basic operation of WAWA is heuristic search, with
our SCORELINK function providing the sorting heuris-
tic. WAWA collects the 100 pages that SCOREPAGE rates
highest. The user can choose to seed the queue of pages
to fetch in two ways: either by specifying a set of start-
ing URLS or by providing a simple query that WAWA con-
verts into “query” URLs that are sent to a user-chosen
subset of selectable search-engine sites (currently Al-
taVista, Excite, Info Seek, Lycos, and Yahoo).

Although not mentioned in Table 1, the user may also
specify a depth limit that puts an upper bound on the
distance the system will wander from the initial URLs.

Before fetching a page (other than those initially in
the search queue), Wawa has predicted the value of
fetching the page, based on the contents of the “refer-
ring” page that linked to it. After fetching and analyz-
ing the text, the system will have a better estimate of
the page’s value to the user. Any differences between the
“before” and “after” estimates constitute an error that
can be used by the backpropagation (BP) [7] training
algorithm to improve the SCORELINK neural network.

In addition to the above system-internal method of
automatically creating training examples via temporal-
difference learning [11], the user can improve the
SCOREPAGE and SCORELINK neural networks in two
ways. One, the user can provide additional advice. Ob-
serving the system’s behavior is likely to invoke thoughts
of good additional instructions. WAWA can accept new
advice and augment its neural networks at any time.
It simply adds to a network additional nodes that rep-
resent the compiled advice. Providing such hints can
rapidly and drastically improve WAWA’s performance.

Table 1: The WAWA Algorithm

Unless they have been saved to disk in a
previous session, create the ScoreLink and
ScorePage neural networks by reading the
user’s initial advice (if any).

Either (a) start by adding the user-provided URLs
to the search queue; or
(b) initialize the search queue with URLS
that will query the user’s chosen
set of Web search-engine sites.

Execute the following concurrent processes.

Independent Process #1
While the search queue is not empty nor the
maximum number of URLS visited,

Let URLtoVisit = pop(search queue).
Fetch URLtoVisit.

Evaluate U RLtoVisit using ScorePage.
If score is high enough, insert URLtoVisit
into the sorted list of best pages found.
Use the score of URLtoVisit to improve
the predictions of the ScoreLink function.

Evaluate the hyperlinks in URLtoVisit using
ScoreLink (however, only score those links

that have not yet been visited this session).
Insert these new URLs into the (sorted) search
queue if they fit within its max-length limitation.

Independent Process #2
Whenever the user provides additional advice,
add it to the appropriate neural network.

Independent Process #3

Whenever the person rates a fetched page,
use this rating to create a training example
for the ScorePage neural network.

Although more tedious, the user can also rate pages
as a mechanism for providing training examples. This
can be useful when the user is unable to articulate why
the system is misscoring pages and links, but is able
to provide better scores. This standard “learning from
labeled examples” methodology has been previously in-
vestigated by other researchers, e.g., [6], and we will not
further discuss this aspect of WAWA in this article. We
do conjecture, though, that most of the improvement
to WAWA’s neural networks, especially to SCOREPAGE,
will result from users providing advice. In our personal
experience, it is easy to think of simple advice that
would require a large number of labeled examples in
order to learn purely inductively. Empirical support for
these claims is a topic of experiments in progress.

WawA’s use of neural networks means we need a

mechanism for processing arbitrarily long Web pages
with the fixed-sized input vectors that neural networks
have. One approach would be to use recurrent neu-
ral networks, but instead we borrow an idea from
NETTALK [9], though our basic unit is a word rather
than an (alphabetic) letter as in NETTALK. WAWA
slides a fixed-width (15 words typically) window across
a page, and many of the “features” we use to represent
a page are defined with respect to the current center of
this window.

Basically, we define the score of a page to be the high-
est score the SCOREPAGE network produces as it is slid
across the page. The value of a hyperlink is computed
similarly, but WAWA only slides the SCORELINK net-
work over the hypertexrt associated with that hyperlink.
(However, in this case the window starts by being cen-
tered on the first word in the hypertext, which means
the nearby words outside of the hypertext will some-
times fill some of the window positions.)

We next turn to how WAWA represents Web pages and
the constructs of its advice language. The input features
it extracts (from either HTML or plain text) constitute
the primitives in our advice language. We have devoted
substantial effort to extracting a large number of pos-
sible features from Web pages, since the richness of the
set of extracted features determines the expressiveness
of our advice language.

A standard representation of free-form text used in
information retrieval is the vector-space model [8] (or
the bag-of-words representation). The left side of Fig. 1
illustrates this representation. Basically, word order is
lost and all that is used is a vector that records the words
present on the page, typically scaled by the number of
occurrences of each words and usually normalized with
respect to the expected number of occurrences of each
word (e.g., TFIDF [§]).

Information retrieval systems also usually discard
common (“stop”) words and “stem” all words to their
root form (e.g., “walked” becomes “walk”) [8]. Doing so
greatly reduces the dimensionality of the problem, and
WawaA also performs these two preprocessing steps.

Instead of solely using the bag-of-words model, how-
ever, we use a richer representation that preserves some
word-order information. We also take advantage of the
structure of HTML documents when a fetched page is so
formatted. First, we augment the bag-of-words model,
by using several localized bags, some of which are il-
lustrated on the right side of Fig. 1. Besides a bag for
all the words on the page, we have word bags for: the
words in the title, the page’s URL, the sliding window,
the left and right-sides of the window, the current hyper-
link should the window be inside hypertext, the current
section’s title, and several others.

In addition to these localized word bags, we also ex-
tract features representing several fixed positions on
Web pages. Besides the obvious case of the positions
in the sliding window (eg, the middle word in the win-
dow), we represent the first and last N words (for some
fixed N) in the title, the URL, the section titles, etc.
Due to its important role in the Web, we also specially

Original Web Page

URL: www.page.com
Title: A Sample Page

This space
for rent.

Stop

Words
Removal

and Stemming

\ 4
URL: www.page.com

Title: Sample Page Sliding

[~ Window

|
|

|

|

‘ S

| ot e |
‘ words 1n title

|

|

|

|

|

S
3) 2 www| | rent
S0 page ace
ISy @% com P
ds i ds i
WWW p]@ ngiln ‘i;l/(i)rrldi)\l):/1
Standard Aspects of Our
Approach Representation

Figure 1: Internally Representing Web Pages

represent the last N fields (i.e., delimited by dots) in
the server portion of URLs and hyperlinks, e.g. www acm
org in http://www.acm.org/sigchi/.

Besides the input features related to words and their
positions on the page, WAWA also constructs various
other features, such as the length of the page, the date
the page was created (should the page’s server provide
that info), whether the sliding window currently is in-
side emphasized HTML text, the sizes of the various
word bags, how many words mentioned in advice are
present in the various bags, etc.

WawA’s advice language allows users to express more
complicated instructions that refer to the basic features
of Web pages that WAWA extracts. A sample is:

WHEN consecutiveWordsInHypertext
(intelligent user interface)
STRONGLY SUGGEST FOLLOWING HYPERLINK

This advice would lead to the addition of a node
(“hidden unit”), to the SCORELINK neural network,
that looks for user in the center of the sliding window,
with intelligent before it and interface after it. When
such a phrase was found in some hypertext, the score for
the associated hyperlink would be increased by a large

amount. One of our major current efforts involves devel-
oping an easy-to-use interface for composing advice. We
have found that a menu-based design, one that converts
users’ choices into instructions in WAwWA’s advice lan-
guage, produces a good combination of simplicity and
expressiveness.

Further details about WAWA and an experimental
study of its ability to improve its performance can be
found in Shavlik and Eliassi-Rad [10]. The design of
an appropriate, cost-effective framework for evaluating
synergistic, human-computer learning systems is not
clearcut and remains an important open issue.

CURRENT AND RELATED RESEARCH

We are currently involving “real” users in order to better
understand what people would like to say to such an
instructable Web agent. Based on these interactions, we
are improving our advice language. We are also running
additional experiments to better study how well WAwWA
is able to refine user-provided advice.

Another current goal is to embed WAWA into a major,
existing Web browser, thereby minimizing new interface
features that users must learn in order to interact with
our system. Related to this, we are developing methods
whereby WAWA can automatically infer plausible train-
ing examples by observing users’ normal use of their
browsers. Finally, we are adding to WAwA additional
knowledge about English, such as synonyms [5], and
are tagging words with their likely parts of speech [1].

We are collaborating with campus librarians who are
specialists in the Internet to assist in building special-
ized versions of the system for subject-specific tasks.
Then individual campus scientists can further customize
these systems to their particular interests. Having hu-
man librarians provide direct assistance to individual
scientists at a detailed level on a one-to-one basis is
not economically feasible. Our approach promises to
allow the expertise of librarians to be leveraged. In ad-
dition, our use of machine learning means that these
systems will be able to automatically refine and extend
the approximate and incomplete instructions provided
by users, as well as adjust as users’ interests change.

This collaboration between computer scientists, li-
brarians, and scientists will leverage the expertise and
time of each participant. In effect, expertise in all three
levels of electronic information retrieval will be repre-
sented: the builders of the system, the information spe-
cialists who customize retrievals for individual users,
and the end users themselves.

Like WAWA, Syskill and Webert [6] and WebWatcher
[2] are Web agents that use machine learning techniques.
Letizia [3] is a related system that uses lookahead search
from the current location in the user’s Web browser.
Unlike Wawa, these systems are unable to accept (and
refine) advice; advice usually is simple to provide and
can lead to better learning than rating many Web pages.

CONCLUSION

We are creating an intelligent interface agent that aids
in navigating and monitoring the Web for information

relevant to the long-term interests of individuals. Users
of our WAWA system provide instructions in our advice
language that informs the system as to which hyper-
links it should follow and which Web pages to collect.
These instructions are compiled by WAWA into two neu-
ral networks, which it then automatically refines based
on additional feedback from the user, as well as train-
ing examples it constructs internally based on its expe-
riences. The resulting system is able to autonomously
wander the Web, collecting useful pages and periodically
revisiting pages whose content regularly changes (e.g.,
news sites). Based on the training it receives, Wawa
improves its performance over time and also is able to
quickly adapt when the interests of its user changes.

ACKNOWLEDGEMENTS

This research is partially supported by NSF Grant IRI-
9502990, NSF Grant NCR-9712163, and ONR Grant
N00014-93-1-0998.

References

[1] E. Brill. Some advances in rule-based part of speech
tagging. In Proc. National Conf. on AI (AAAI-94),
pages 722-727, 1994.

[2] T. Joachims, D. Freitag, and T. Mitchell. Web-
watcher: A tour guide for the World Wide Web. In
Proc. Intl. Joint Conf. on Al pages 770-775, 1997.

[3] H. Lieberman. Letzia: An agent that assists web
browsing. In Proc. Intl. Joint Conf. on Al pages
924-929, 1995.

[4] R. Maclin and J. Shavlik. Creating advice-taking
reinforcement learners. Machine Learning, 22:251—
281, 1996.

[5] G.Miller. WordNet: A lexical database for English.
Communications of the ACM, 38:39-41, 1995.

[6] M. Pazzani, J. Muramatsu, and D. Billsus. Identi-
fying interesting web sites. In Proc. National Conf.
on AI (AAAI-96), pages 5461, 1996.

[7] D. Rumelhart, G. Hinton, and R. Williams. Learn-
ing representations by back-propagating errors.
Nature, 323:533-536, 1986.

[8] G. Salton. Developments in automatic text re-
trieval. Science, 253:974-979, 1991.

[9] T. Sejnowski and C. Rosenberg. Parallel networks
that learn to pronounce English text. Complex Sys-
tems, 1:145-168, 1987.

[10] J. Shavlik and T. Eliassi-Rad. Intelligent agents
for Web-based tasks: An advice-taking approach.

In AAAI/ICML Workshop on Learning for Text
Categorization, 1998.

[11] R. Sutton. Learning to predict by the methods
of temporal differences. Machine Learning, 3:9—44,
1988.

[12] G. Towell and J. Shavlik. Knowledge-based artifi-
cial neural networks. Artificial Intelligence, 70:119—
165, 1994.

